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ABSTRACT

Let
(1) m~~,• n .

be positive integers pairwise relatively prime. The Chinese Remainder Problem
is to find a solution x of the n congruences
(2) x E ai(mod mi) (i=1,..,n)

where the integers ai are given. From Marcel Riesz I learnt orally that

this problem is an analogue of the problem of finding a polynomial P(x) of
degree n-1 which solves the interpolation problem
(3) P(xi) - yi(i=l,...,n) (yi given and also distinct xi )

This is solved by Lagrange's interpolation formula

n
(4) P(x) = 3 yiLi(x)

i=I 1,

where Li(x) are the fundamental functions satisfying

(5) Li(xj) = 6ij

Also (2) can be similarly solved by determining the bi(i=1,...,n) satisfying
the congruences
(6) bi  6ij(mod mj)

Thj2rft~ 1. A solution of the system (2) is given by

n
(7) x aibi .

Besides recording this analogy of Marcel Riesz, the author's contribution

is the following remark: Just as Newton solves the problem (3) successively
with his formula using successive divided differences, it is convenient to
solve the system (2) successively obtaining

Theorem 2. The integer
(8) x = a, + d1m1 + d2mlm2+...+dnlmlm2*.. n-1

is a solution of (2) if we determine the di(if1,...,n-1) successively by the
congruences
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a1 + d I m = a 2 (mod m 2

al + d1m I + d2 mlm 2 - a3 (mod m3 )

a1 + dl]l+...+dn ml...mn-l = a (mod m n)11. n-l ni n n

Indeed, from (9) we find that

x = a, +dlml+...+dk lmlm 2...mk - ak (mod ik)

for k =1,...,n.
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SIGNIFICANCE AND EXPLANATION

The Chinese Remainder Problem (Ch.R.P) is to find an integer x such

that

x - aimod mli) (i=1,...,n)

where mi are pairwise relatively prime moduli and ai are given integers.

In the 195 0 's I learnt orally from Marcel Riesz that the CH.R.P. is an

analogue of the polynomial interpolation problem 
'  ' ....

P(xi) = yi(i=1,...,n) , P(x) C *n-1

and that the Ch.R.P. can be solved by an analogue of Lagrange's interpolation

formula. The author now adds the remark that the Ch.R.P. can be solved, even

more economically, by an analogue of Newton formula using successive divided

differences. "
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THE CHINESE REMAINDER PROBLEM AND POLYNOMIAL INTERPOLATION

I. J. Schoenberg

Let

(1) mi(i-1,...,n) be positive integer s.t. (mi,mj ) = 1 if i # j•

The Chinese remainder problem is as follows

TM.Ro a. Given the integers ai(il1,...,n) we are to find an

interger x satisfying the congruences

(2) x - ai(mod mi) , (i-1,.o,n)

Sometime in the nineteen-fifties Marcel Riesz visited the Universit f

Pennsylvania and told us informally that the problem (2) can be thought oi is

an analogue of the problem of finding a polynomial P(x) of degree n-1

solving the interpolation problem

(3) P(xi ) = Yi(i=1,...,n), (yi given and also distinct xi)

This problem is solved by Lagrange's formula

n
(4) P(x) = 3 yiLi(x)

where the fundamental functions Li(x) are defined by

(5) Li(xj) - 6ij, (ij=1,..°,n) .

Similarly, if we define the integers bi by the congruences

(6) bi = aij(mod mj) (i,j-1,...,n)

we have

Theorem 1. A solution of the system (2) is given by

n
(7) x in aibi

* , Indeed, as soon as we have the bi satisfying (6), we easily see that

the integer x satisfies (2). Clearly the integers ai are the analogues of
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the Yi of (3), while the integers bi of (6) are the analogues of the

fundamental functions Li(x) of (5).

Our solution of (2) by means of (6) is essentially also the solution as

given in [1, 66-71] and [2, 49-51] without mentioning the analogy with

Lagrange's formula (4).

Besides recording Riesz's remark, the author's contribution is the

*following remark: Newton solves the interpolation prolem (3) successively

using successive divided differences. Applying Newton's idea to the solution

of the congruences (2) we obtain the following procedure:

Determine the integers

(8) di(i = 1,2,...,n-1)

so as to satisfy the n-1 congruences

a + d m -a2 (mod m2)

1 +1dm 1 + d2mjm 2  a3 (mod m 3 )

(9)

+d I 1 + d2mml+...+dn 1mlm 2 ...an _  -a (rood n)

11 d,@m 2 +..+d

Notice he triangular shape of this system: We determine first a value of ml,

then m2 a.s.f. The di having been determined we have

TQe_ 2. A solution of the system (2) is given by

(10) x = a1 + dlmi + d2mlm 2+...+dnimlm2...mn_ 1

Indeed, from (9) we find that

x -a 1 + dlml+...+dk-.imlm 2 ...m ak (mod ik)

for k = 1,2,...,n, because of the (k-1)st congruence (9).

Remarks. 1. The seond Newton approach is slightly more economical:

- While the Lagrange approach required to find the n integers bi, the Newton

approach required to determine only n-1 integers di(i=1,2,...,n-1).
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2. The analogy with Newton's solution of (3): The di of (10)

correspond to the successive divided differences, and the mi are the

analogues of the x-xi.
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ABSTRACT (continued)

degree n-1 which solves the interpolation problem
(3) P(xi) = yi(i= 1,..,n) (Yi given and also distinct xi )

-- This is solved by Lagrange's interpolation formula

n
(4) P(x) = W YiLi(x)

:"a" where Lix) are the fundamental functions satisfying

(5) Li(x j ) = 6ij

Also (2) can be similarly solved by determining the bi(i=1,...,n) satisfying
the congruences
(6) b i  6 ij(mod m)

Theorem 1. A solution of the system (2) is given by

n
. "$"(7) x = aib i .

Besides recording this analogy of Marcel Riesz, the author's contribution
is the following remark: Just as Newton solves the problem (3) successively
with his formula using successive divided differences, it is convenient to
solve the system (2) successively obtaining

Theorem 2. The integer
(8) x= a + dlm 1 + d2mlm 2+...+dn imlm 2...mn_1

is a solution of (2) if we determine the di(i=1,...,n-1) successively by the
congruences

1 1 + d1 m I = a 2 (mod m2 )

a + dm + dl 2 - a3 (mod m3 )

1 1d 1+d12m
(9)

a + d l +...+d nm ..m a (mod mn)
S1 1 n-i 1 n-1 n n

Indeed, from (9) we find that

x a1 +d m+...+dk i 2..
.mk _1 ak (mod mk)

for k
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